Olov Lassus

Blog home

About me

Search

JavaScript: the subsets we use

http://lassus.se

3 @olov

Atom feed

“Easier to reason about”

Assumptions

We make mistakes
while writing code

“Arinocdeq to rencet reegerch, the hmuan brian ig
plrecttey albe to raed colmpex pagasges of txet
caiinontng wdorg in wheih the [rettes huae been
jmblued, pvioedrd the frait and [sat leetrts rmeian in
teihr ercerot piiotgong.”

The brain comes with built-in error
correction

We also make mistakes
while troubleshooting code

A disconnect between assumptions and reality

How do we reduce those mistakes?

“Your mind doesn’t think of a
bayonet in San Francisco”

Assert()

Verifying assumptions

function renameldentifier(node, name) {

Assert(node.type === tkn.IDENTIFIER);
/¥ .0 */

¥

Assert(obj.state === FREE);

Assert(1 >= 0 && J < len & 1 <= J);

More robust
Easier to reason about

http://blog.lassus.se/2011/03/c-style-assertions-in-javascript-via.html

Some JS assumption jammers

Undefined and null

Boxed types

Mixing strings and numbers in arithmetic ops
Function scope, not block scope

Global pollution

Falsy values

Silent errors (as opposed to failing fast)

var length = 3;
console.log(lenght); // prints 3

Introducing a harmony proposal:
ES6 spelling corrector

var length = 3;
console.log(lenght); // prints 3

Nah, that’s ridiculous

var length = 3;
console.log(lenght); // prints 3

The language shouldn’t encourage
sloppiness by guessing for us

Right?

a+hb

 Convert aand b to primitives

— (i.e. undefined, null, boolean, number, string)

* |f at least one of them is a string, then convert
both to strings and concatenate

 Else convert both to numbers and add

a+hb

 Convert aand b to primitives

— (i.e. undefined, null, boolean, number, string)

* |f at least one of them is a string, then convert
both to strings and concatenate

e Else convert both to numbers and add

Number(undefined)
Number(null)
Number(false)
Number(“”)?

QUICK!

a+hb

 Convert aand b to primitives

— (i.e. undefined, null, boolean, number, string)

* |f at least one of them is a string, then convert
both to strings and concatenate

 Else convert both to numbers and add

a+hb

 Convert aand b to primitives
— (i.e. undefined, null, boolean, number, string)

— Specifically, call a.valueOf() and a.toString() in that
order

* |f at least one of them is a string, then convert
both to strings and concatenate

 Else convert both to numbers and add

a+hb

 Convert aand b to primitives
— (i.e. undefined, null, boolean, number, string)

— Specifically, call a.valueOf() and a.toString() in that
order

e Unless ais a Date. In that case call a.toString() and
a.valueOf() in that order.

* |f at least one of them is a string, then convert
both to strings and concatenate

e Else convert both to numbers and add

Alternativea + Db

 Add numbers
* Concatenate strings

lenght = 10; // introduces global

var y; // initialized to undefined
var x = 1 + y; // NaN

Been there, done that

“use strict”; // ES5 strict mode
lenght = 10; // throws

“use restrict”; // restrict mode for JS
var y; // initialized to undefined
var x = 1 + vy; // throws

ES5 strict mode (which is awesome),
restrict mode for JavaScript

http://restrictmode.org
http://isshaper.org

]

You have a choice and it’s easy to
verify statically

You have a choice and it’s easy to
verify statically

< <= >= >

+-*/ %
& | M ~v
<< >> >>>

-V ++V V++ --V V--

A magic hat full of surprises

< <= >= >

+-*/ %
& | M ~v
<< >> >>>

-V ++V V++ --V V--

Restrict mode is an attempt to take
away some of that magic

< <= >= >

+-*/ %
& | M ~v
<< >> >>>

-V ++V V++ --V V--

Goal: assumption-friendlier, more
robust and easier to reason about

< <= >= >

+-*/ %
& | M ~v
<< >> >>>

-V ++V V++ --V V--

Goal: subset semantics, reach the
famous 99%

< <= >= >

strings or numbers,
never a mix

strings or numbers,
in any combination

_ ok [oo
& | M ~v
<< >> >>>
-V ++V V++ -V V--

numbers

+v lv
&& || ?:
o[k]

A friendly deterministic face
Just like before

Restrict mode idea

| promise to limit myself to this subset

A checker inserts type-assertions in my
program

| write tests just like before

Whenever | break the subset promise, the
program fails fast

A restrict mode clean program executes
identically with or without the checker, so |
deploy the original (non-checked) program

"use strict"; "use restrict";

function average(x, y) {
return (x +y) / 2;

¥

var x;

print(average(l, 2));
print(average(1, "2"));
print(average(l, x));

Demo
restrictmode.org/try

Easier to reason about

e When | read source code that has the “use
restrict” directive

| have an easier time reasoning about the program

Just like Assert’s

* When | need to fix bugs in it

The assumption versus reality disconnect just
became a lot smaller

s it “the right” subset?

* |t must be helpful and can’t get in the way

* Applied to existing projects, we’d like the
subset mismatch to be tiny

s it “the right” subset?

e v8bench: ok, found a bad practice (using strings
in arithmetic’s)

* Kraken: ok, found the NaN bug
* jQuery: ok, found an undefined bug

e JSLint: ok, found a debatable practice (returning
this from String method)

For this little experiment, “yes”. Finding issues was
unexpected.

"use strict"; // try removing me

Number.prototype.isPrime = function() {
Assert(this <= 10); // TODO larger primes
return this === 2 || this === 3 ||

this === 5 || this === 7;
ks

print((5).1sPrime());

ES5 strict mode primitive-this
considered harmful

JSShaper

An extensible framework
for syntax shaping (syntax
tree transformation)

jsshaper.org

The restrict-mode
checker is a plugin

A few other plugins

— Asserter

— Bitwiser

— Watcher

— Yielder (C. Scott Ananian)

If you want to “use restrict”

Toy around on restrictmode.org/try

Download JSShaper and do post-edit processing
of your code with the checker
— Before running your test suite if not always

I’d love feedback on how the subset matches the
code you write

No lock-in, just remove the “use restrict”
directive and nobody needs to know you went
there in the first place

It’s still JavaScript

“Easier to reason about”

Choose your subset and style guide
Tools to help verifying those
Assertive-rich programming

Prioritize getting your API:s right

— “If you program, you are an APl designer”

Challenge your assumptions

Reading code is a skill, practice it and learn
from others

And have fun

Olov Lassus

Blog home About me Search Atom feed
PRl | . ea” i R+
- -s -n -s -.

=. .= =§. IE= ====. :5.

HH sane pht-H-HH w: "3s a8
. asasas i bt H
ALLLL LA LTS

Thank you

http://lassus.se
3 @olov

