
LET'S CONST TOGETHER, RIGHT NOW WITH ES3

 / Olov Lassus @olov

http://lassus.se/
http://twitter.com/olov

SAID ABOUT A LANGUAGE FROM THE 50'S
“ Here is a language so far ahead of its time
that it was not only an improvement on its

predecessors but also on nearly all its
successors. ”

_ SAID THIS, ABOUT _?
“ Here is a language so far ahead of its time
that it was not only an improvement on its

predecessors but also on nearly all its
successors. ”

TONY HOARE SAID THIS, ABOUT _?
“ Here is a language so far ahead of its time
that it was not only an improvement on its

predecessors but also on nearly all its
successors. ”

ALGOL

STATIC / LEXICAL SCOPE
Old-school but still going strong (ALGOL 58). Lexical scope

basically means that you can match a variable reference to its
corresponding declaration, without running the program.

JS SCOPE: "IT'S COMPLICATED"
Global object
this
with
eval
Function scope (hoisting)

GLOBAL OBJECT

Can be dealt with

// x is not defined here

(function() {
 x = "yup"; // oops, we forgot var
})();
console.log(x); // yup, x is now a global

GLOBAL OBJECT

Can be dealt with

"use strict";

window[Math.random() > 0.5 ? "x" : "y"] = "yup";

console.log(x); // will it crash?

THIS
this is special as in most object oriented languages.

A common JS gotcha is that this changes as soon as you
make a regular function call (instead of calling a method),

becomes window/global or null.

Can be dealt with

WITH
Pretty crazy and destroys static scope

Can be dealt with (use with caution)

EVAL
Can introduce new variable names so destroys static scope

Can be dealt with (use with caution)

FUNCTION SCOPE

SHADOWING
var str = "kramer";
function bangify(str) {
 str = str + "!";
 return str;
}
console.log(bangify(str)); // prints "kramer!"
console.log(str); // prints "kramer";

SHADOWING
var str = "kramer";
function bangify(s) {
 var str = s + "!";
 return str;
}
console.log(bangify(str)); // prints "kramer!"
console.log(str); // prints "kramer";

IN MOST OTHER {} LANGUAGES
void fn() {
 int y = 0;
 // z is certainly not defined here
 for (int x = 0; x < 10; x++) {
 int y = x * 2;
 int z = y;
 }
 printf("%d\n", y); // prints 0
 // z is not defined here
}
fn();

IN JAVASCRIPT
function fn() {
 var y = 0;
 // z is active here (undefined)
 for (var x = 0; x < 10; x++) {
 var y = x * 2;
 var z = y;
 }
 console.log(y); // prints 18
 // z is active here too (18)
}
fn();

IN JAVASCRIPT (NORMALIZED EQUIVALENT)
function fn() {
 var y = undefined, z = undefined;
 y = 0;
 // z is active here (undefined)
 for (var x = 0; x < 10; x++) {
 y = x * 2;
 z = y;
 }
 console.log(y); // prints 18
 // z is active here too (18)
}
fn();

FUNCTION SCOPE
We have various ways of dealing with the limitations of

function scope in JS, most of them are not that fun.

Manual hoisting is bad for robustness, encapsulation and
readability.

ENTER ES6!

LET
let is the best thing since sliced arrays.

let fixes var and gives you block scope!

IN ES6
"use strict";
function fn() {
 let y = 0;
 // z is certainly not defined here
 for (let x = 0; x < 10; x++) {
 let y = x * 2;
 let z = y;
 }
 console.log(y); // prints 0
 // z is not defined here
}
fn();

RIGHT NOW?

IN NODE.JS

Right now!

~ % cat yup.js
"use strict";
let x = "yup";
{ let x = "nope"; }
console.log(x);

~ % node --harmony yup.js
yup

IN CHROME (WHILE DEVELOPING)
chrome://flags: check Enable experimental JavaScript

Right now!

> (function(){
 "use strict";
 let x = "yup";
 { let x = "nope"; }
 console.log(x);
})();
yup

IN ALL BROWSERS?

DEFS.JS
Static scope analysis and transpilation of ES6 block scoped

const and let variables, to ES3

https://github.com/olov/defs
MIT licensed

IN THE BROWSER USING DEFS.JS

Plain ES3 that runs everywhere

~ % npm install -g defs

~ % defs yup.js
"use strict";
var x = "yup";
{ var x$0 = "nope"; }
console.log(x);

IN THE BROWSER USING DEFS.JS
Going back to the previous example

~ % cat example.js
"use strict";
function fn() {
 let y = 0;
 // z is certainly not defined here
 for (let x = 0; x < 10; x++) {
 let y = x * 2;
 let z = y;
 }
 console.log(y); // prints 0
 // z is not defined here
}
fn();

IN THE BROWSER USING DEFS.JS
Transpiles to

~ % defs example.js
"use strict";
function fn() {
 var y = 0;
 // z is certainly not defined here
 for (var x = 0; x < 10; x++) {
 var y$0 = x * 2;
 var z = y$0;
 }
 console.log(y); // prints 0
 // z is not defined here
}
fn();

AHA, I CAN FOOL YOU!
"use strict";
function fn() {
 let y = 0;
 console.log(z);
 for (let x = 0; x < 10; x++) {
 let y = x * 2;
 let z = y;
 }
 console.log(y); // prints 0
 // z is not defined here
}
fn();

NOT REALLY
~ % defs example.js

line 4: reference to unknown global variable z

WHATEVER, THIS TIME I'LL FOOL YOU!
"use strict";
function fn() {
 let y = 0;
 // z is certainly not defined here
 for (let x = 0; x < 10; x++) {
 console.log(z);
 let y = x * 2;
 let z = y;
 }
 console.log(y); // prints 0
 // z is not defined here
}
fn();

NOT REALLY
~ % defs example.js

line 6: z is referenced before its declaration

CONST
If you liked let, you're gonna love const

LIKE LET, JUST BETTER
const is the same thing as let, with one major difference.

A variable initialized as const can never be modified.
Note: Not the same thing as deep immutability

THAT IS AWESOME

WAIT, WHY IS THAT?
Well, it turns out that in most programs the vast majority of

your variables are actually consts, just that you have had no
way of expressing it or automatically verifying it.

Note: Compare with final (Java), val (Scala), const C/C++`

LET'S GO BACK TO THE EXAMPLE
"use strict";
function fn() {
 let y = 0;
 for (let x = 0; x < 10; x++) {
 let y = x * 2;
 let z = y;
 }
 console.log(y); // prints 0
}
fn();

USING CONST INSTEAD
"use strict";
function fn() {
 const y = 0;
 for (let x = 0; x < 10; x++) {
 const y = x * 2;
 const z = y;
 }
 console.log(y); // prints 0
}
fn();

WOHOO! BREAKING YOU!
"use strict";
function fn() {
 const y = 0;
 for (let x = 0; x < 10; x++) {
 const y = x * 2;
 y++; // this should't pass
 const z = y;
 }
 console.log(y); // prints 0
}

NOT REALLY
~ % defs example.js

line 6: can't assign to const variable y

CAVEAT 1: REFERENCED BEFORE
DECLARATION

Impossible to catch with static analysis so requires run-time
checking. Not a problem in practice.

const fns = [function() { return x; }, function() { return 1; }];
function zeroOrOne() { return Math.floor(Math.random() * 2); }

fns[zeroOrOne()]();
let x = 1;
fns[zeroOrOne()]();

CAVEAT 2: LOOP CLOSURES

let y is a new binding per iteration while a transformed var
y won't be.

for (let x = 0; x < 10; x++) {
 let y = x;
 arr.push(function() { return y; });
}
// line 3: can't transform closure. y is defined outside closure,
// inside loop

CAVEAT 2: LOOP CLOSURES

The solution is to create the binding manually as we've always
done.

for (let x = 0; x < 10; x++) {
 (function(y) {
 arr.push(function() { return y; });
 })(x);
}

CONFIGURING DEFS
Example defs-config.json:

{
 "environments": ["node", "browser"],

 "globals": {
 "my": false,
 "hat": true
 },
 "disallowVars": false,
 "disallowDuplicated": true,
 "disallowUnknownReferences": true
}

WRAPPING UP
let and const are my favorite ES6 features
Works in Node today already (--harmony)
defs.js transpiles it to beautiful ES3 code
Thus it works in the browsers today already

GOOD TO GO?
I don't use var any longer in my non-public node.js code
I still use var in most of my open sourced npm modules
All my shared node/client code is constlet style
I'm migrating to constlet style for my client side code
defs.js itself is constlet style (and self-transpiles)
browserify and defs.js is an awesome combo and a
plugin is coming
I'd love to see more constlet style modules on npm

REMEMBER?
_ is not the new _, _ is

REMEMBER!
let is not the new _, _ is

REMEMBER!
let is not the new var, _ is

REMEMBER!
let is not the new var, const is

THANK YOU!
@olov

https://github.com/olov/defs
npm install -g defs

